date: 2024-11-22
title: BFR
status: DONE
author:
- AllenYGY
tags:
- NOTE
- BFR
- K-Means
description: Please describe how the K-Means algorithm can be extended to detect outliers. Use a simple example to support your answer.
publish: True
BFR
The BFR Algorithm is an extension of K-Means designed for large-scale and high-dimensional data. It improves K-Means by dividing data into three sets:
Outliers are identified using the RS:
A 2D dataset shows customer transactions. Most points group into three clusters:
Some points are far from these groups.
Unusual transactions, such as very high-value but rare purchases, are identified as outliers.
BFR 算法是一种用于 大规模数据聚类 的经典方法,尤其适用于需要在主内存受限的情况下处理高维数据流。该算法以 k-means 为核心,利用主内存和磁盘协作来进行聚类。
利用统计摘要:
分块处理数据:
聚类更新:
BFR 算法分为以下几个阶段:
对于每个加载到内存中的数据块,执行以下操作:
分配数据点到簇:
处理离群点:
BFR 算法是一种结合了 k-means 和统计摘要的高效聚类算法,适用于大规模、高维、数据流式的场景。通过分块处理和离群点管理,它能够在内存限制下实现接近于传统聚类算法的效果。如果需要实现或更深入的细节,欢迎随时交流!