Causal Discovery Methods

Causal Discovery methods based on observational data

November 13, 2024

<u> </u>	
21162	 57
Causa	 L V .

э

2 Overview of Data-based Causal Discovery Methods

3 Comparison of Methods

э

メロト メポト メヨト メヨト

2 Overview of Data-based Causal Discovery Methods

3 Comparison of Methods

~	••	
1 31163		577
Causa		

ъ

イロト イポト イヨト イヨト

Definition

- Causality is the influence one event (cause) has on another (effect).
- It implies that changes in the cause lead to changes in the effect, forming a non-random link.

Key Characteristics of Causality

- Directionality: A causes B, but B does not necessarily cause A.
- Mechanism: Changes in the cause generate changes in the effect.
- **Counterfactuals**: Considers what would happen to the effect if the cause did not occur.

Caus	alit	v
		-y -

4/28

人名德人 化原本 化原本

Causality Discovery

Methods

- Experiment-based approach
 - Control experiment: Intervention causes changes in outcomes,
 - In many cases too expensive, too time-consuming, or even impossible.
- Data-based approach

(日)

2 Overview of Data-based Causal Discovery Methods

Constraint-Based Methods Functional Causal Models (FCMs) Hybrid Methods

3 Comparison of Methods

э.

メロト メポト メヨト メヨト

Methods

- Constraint-based methods
 - PC
 - FCI
- Score-based methods
 - GES (Greedy Equivalence Search)
- Functional Causal Models
 - Linear, Non-Gaussian Model
 - Non-linear Methods
- Hybrid Methods
 - SELF (Structural Equational Likelihood Framework)
 - FRITL (Functional Representation with Independent Triad and Likelihood)

2 Overview of Data-based Causal Discovery Methods

Constraint-Based Methods

Functional Causal Models (FCMs) Hybrid Methods

3 Comparison of Methods

э.

イロト (雪) (ヨ) (ヨ)

Constraint-Based Method: Assumptions

Causal Markov Assumption: A variable *X* is independent of every other variable (except *X*'s effects) conditional on all of its direct causes.

Causal Faithfulness Assumption: for all observed variables, X_i is independent of X_j conditional on variables Z if and only if the Markov Assumption for \mathcal{G} entails such conditional independencies.

医水黄医水黄

Constraint-Based Method

Limitations: DAGs within the same Markov Equivalence Class cannot be distinguished solely based on the conditional independence relationships observed in the data.

Using Conditional Independence Tests to Infer Causal Structure

<u> </u>	
21162	χ.
Causa	

Causal Discovery Methods

• • • • • • • November 13, 2024

4 同

Constraint-Based Method: PC Algorithm

- **1** Initialize Graph: Start with a fully connected undirected graph.
- 2 Edge Removal: Test conditional independence for each pair of variables given subsets of other variables. Remove edges where conditional independence is found.
- **3 Identify Colliders**: Orient edges for v-structures $(X \rightarrow Z \leftarrow Y)$ where *X* and *Y* are independent unless conditioned on *Z*.
- Orient Remaining Edges: Use orientation rules to direct undetermined edges, leaving ambiguous edges undirected.
- **6 Output CPDAG**: The result is a CPDAG representing the Markov Equivalence Class of the causal structure.

イロト イポト イヨト イヨト

Comparison of Methods

Constraint-Based Method: PC Algorithm Example

Example of PC(Peter-Clark)

Саι	ısal	lity	

▶ 4 3

э

12 / 28

Comparison of Methods

PC Algorithm Limitation

• Limitations: Unable to deal with latent confounders

 $X_1 \perp \downarrow X_2$ $X_1 \not \perp \downarrow \downarrow X_4 \mid X_3$ $X_2 \not \perp \downarrow \downarrow X_4 \mid X_3$

<u> </u>	
01100	
Causa	 v

э

イロト イポト イヨト イヨト

Constraint-Based Method: FCI Algorithm Process

- **Initialize Graph**: Start with a fully connected undirected graph over all observed variables.
- **2** Edge Removal: Test conditional independence between each pair of variables given subsets of other variables. Remove edges where conditional independence is found, accounting for possible latent confounders and selection bias.
- **3 Identify Colliders**: Identify v-structures (*X* → *Z* ← *Y*) where *X* and *Y* are not adjacent, and no conditioning set separates *X* and *Y*.
- Propagate Edge Orientations: Apply orientation rules to propagate edge directions using partially oriented information, ensuring consistency and avoiding cycles.
- **6** Handle Ambiguous Relationships: Determine possible orientations considering latent variables and adjust edge marks to represent ambiguous causal relationships using open endpoints (e.g., $X \circ \rightarrow Y$).
- G Output PAG: The result is a Partial Ancestral Graph (PAG) that represents the Markov equivalence class, accounting for potential latent confounders and selection effects.

Comparison of Methods

Constraint-Based Method: FCI Algorithm Process

<u> </u>	
21162	1177
Causa	uuv

• • = • • =

< □ > < 同

2 Overview of Data-based Causal Discovery Methods

Constraint-Based Methods Functional Causal Models (FCMs)

Hybrid Methods

3 Comparison of Methods

Эł,

イロト (雪) (ヨ) (ヨ)

Comparison of Methods

Functional-Based Method: Assumptions

Considering the data generating process, effect generated from causes and noises represented with functional causal model:

$$Y = f(X, E)$$

Introducing additional assumptions:

• Independent noise assumption: Independence between the causes X and noises E

- Independent mechanism assumption: Independence between the causes X and process f

$$Y = f(x), X \perp f(x)$$

<u> </u>	
1 01100	
Valusa	I V .

Comparison of Methods

Functional-Based Methods: independent Noise (IN) Condition

• Causal Asymmetry in the Linear non-Gaussian Case Data Generated by $Y = \alpha X + E(i.e., X \rightarrow Y)$ (X, Y) follows the IN condition iff regression residual $Y - \hat{w}^T X$ is independent from X

Functional-Based Methods: LiNGAM

• Under the above assumptions, the LiNGAM can be expressed as:

$$\mathbf{X} = \mathbf{B}\mathbf{X} + \mathbf{E}$$

- **X** is a *p*-dimensional random vector, representing the observed variables.
- **B** is a *p* × *p*-dimensional matrix, representing the connection weights between the observed variables.
- **E** is a *p*-dimensional non-Gaussian random noise vector.
- Because of the DAG assumption, there exists a permutation matrix $P \in \mathbb{R}^{p \times p}$ such that $\mathbf{B}' = P\mathbf{B}P^T$ is a strict lower triangular matrix with diagonal elements all equal to 0.

Comparison of Methods

LiNGAM: analysis by ICA

☑ Assumptions in ICA

- At most one of S_i is Gaussian
- Size(X) >= Size(S), and A is of full column rank

Then A can be estimated up to column scale and permutation indeterminacies

November 13, 2024

20 / 28

Comparison of Methods

LiNGAM: analysis by ICA

• LiNGAM:

• ICA:

- X = BX + EE = X BXE = (I B)XY = WX
 - B = I W

		E DAG
Causal Discovery Methods	November 13, 2024	21 / 28

Example:

LiNGAM: Example

$$\begin{bmatrix} E_1 \\ E_3 \\ E_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -0.5 & 1 & 0 \\ 0.2 & -0.3 & 1 \end{bmatrix} \begin{bmatrix} X_2 \\ X_3 \\ X_1 \end{bmatrix}$$
$$\Rightarrow \begin{cases} X_2 = E_1 \\ X_3 = 0.5X_2 + E_3 \\ X_1 = -0.2X_2 + 0.3X_3 + E_2 \end{cases}$$

ъ

22 / 28

イロト イヨト イヨト

Functional-Based Methods: PNL (post-NonLinear method)

- LiNGAM algorithms can only solve linear problems.
- In the PNL model, assuming that there is a causal relationship $v_i \rightarrow v_j$, it can be expressed as

$$v_j = f_2(f_1(v_i) + n_j)$$

- v_i and n_j are independent of each other
- f_1 is a non-constant smooth function
- f_2 is a reversible smooth function and $f_2' \neq 0$

23 / 28

2 Overview of Data-based Causal Discovery Methods

Constraint-Based Methods Functional Causal Models (FCMs) Hybrid Methods

3 Comparison of Methods

Эł,

イロト (雪) (ヨ) (ヨ)

Hybrid Methods

- Combine constraint-based and functional approaches
- Examples:
 - SELF (Structural Equational Likelihood Framework)
 - FRITL (Functional Representation with Independent Triad and Likelihood)
- Strengths: Addresses limitations in handling latent confounders

• • • • • • •

< 一型

2 Overview of Data-based Causal Discovery Methods

3 Comparison of Methods

ъ

イロト イポト イヨト イヨト

Comparison of Methods ○●○

Comparison of Causal Discovery Methods

	PC	FCI	GES	LiNGAM/PNL/ANM	SELF	FRITL
Faithfulness assumption required?	Yes	Yes	Some weaker condition required (not totally clear yet)	No	No	No
Specific assumptions on data distributions required?	No	No	Yes (usually assumes linear- Gaussian models or multinomial distributions)	Yes	Yes	Yes
Properly handle confounders?	No	Yes	No	No	No	Yes
Output	Markov equivalence class	Partial ancestral graph	Markov equivalence class	DAG as well as causal model (under the respective identifiability conditions) Comparison of	DAG with likelihood-based causal structure (assumes observed variables) of Causal Dis	DAG or PAG, refined with ICA and Triad condition for latent confounders COVERY Metho

November 13, 2024

イロト イポト イヨト イヨト

27 / 28

э

Thank you for listening!

<u> </u>	
1 01100	
Ouusu	

ъ

くロト 人間 トイヨト イヨト